Brainstorming a Special Relativity Activity

My AP Physics C: E&M class finished all the content we needed to get through with a few weeks to spare, so I decided (amidst their great excitement) to do a unit on relative motion and special relativity. Thankfully, the physics education twitter community is awesome, and I’ve been rescued from what would otherwise be certain doom with this unit, especially given that I had almost as much to learn about it as my students. Special thanks to @LCTTA and @kellyoshea for equipping me with a life preserver before I dove out into such choppy waters.

Through my various readings and video watchings, I came across this fantastic video by MinutePhysics. Take a moment to watch it before reading further; it’s only a 2 minute video, and it’ll save me a lot of typing. The inspiration for this activity came from what he call’s the switch-a-roo, in particular when “rotates” the slices vs. just sliding them (at about 1:03).

Beginnings of an activity

My idea is really nothing more than making strips of paper that students can slide and rotate much like the “slices” shown in the MinutePhysics video. This will be given to them after a week of basic relative motion, so frames of reference and relative velocity are part of their vocabulary now. This will also go right after an introduction to the Michelson-Morley experiment and their “discovery” that the speed of light is constant in all frames of reference.

There will be two objects in motion relative to one another along with a photon. Both objects and the photon start at the same position. One object remains stationary, the other moves away with a constant velocity as does the photon in the same direction. Here’s how I’m imagining this might go:

Change the frame of reference such that the other object is at rest.

From this:relmod5To this:rel4mod2.pngHow does this violate the rules of special relativity? I would be looking for them to notice what’s in green above. I’m also curious as to what discussion the jaggedness of the photon’s line (look closely at the second picture) might generate.

How can you perform a switch-a-roo that doesn’t violate the rules of special relativity? I’m a little unsure how to guide them towards a condition for …doesn’t violate the rules of special relativity beyond that they have to keep the photon line “unbroken.” That makes it work out right, but I’d like it a little more grounded in physics. However, even if I can’t figure that out, it at least allows them to see the creation of a new time axis.

Rel2mod.pngWhat do you think lines parallel to the bottom of each strip mean? It’s a new time axis! This will rely on their previous discussions about spacetime diagrams (which we’ve done for only non-relativistic scenarios in preparation for this part) about lines parallel to the time axis indicate constant position and vice-versa.

Does time in the new frame tick at the same rate as the first frame? Justify you claim with evidence and reasoning. This one’ll be a zinger! Time dilation!

Some other follow-up questions that I’ve yet to think of. Suggestions? Does the new frame have the same position axis as the old one? If not, what would a new one look like? See the next section on why I might ask this as I thought of it while typing it out. However, upon further reflection, I’m not even sure this can be done? Even if not through this particular example, it’s still a great discussion to have.

Some other follow-up questions that I’ve yet to think of. Suggestions?

Ponderings

What I like: I think the most effective (and coolest) thing about this is that it gives students some kind of visual for how to think about time dilation and why the constancy of the speed of light necessitates such an effect. Linking the effects of special relativity to one of the key postulates in relativity, the speed of light in vacuum is constant in all frames of reference, was something that I never really understood until recently, and I want my students to appreciate that link. I think it also helps them appreciate the genius of the theory in that everything works out just fine if you just abandon the idea of absolute simultaneity. It sounds so simple when you say it like that, but it’s really rather profound!

It also sets them up for utilizing spacetime diagrams for relativistic scenarios, especially if we want to get into drawing the new time and position axes for a moving frame on top of those for a stationary frame, as shown here:

What I don’t like: I begin the activity by them seeing that applying a regular ‘ol switch-a-roo (i.e., the Galilean transformation) makes light travels a shorter distance in the same amount of time, thus violating special relativity. And that’s a great starting place, I think. But there’s not really a way to circle back to that to verify that the new switch-a-roo (i.e., the Lorentz transformation) succeeds where the old one fails. I see how that happens when the new position axis is drawn (like in the SparkNotes picture above), but I’m not sure my students will see that. Perhaps I should just ask them to discuss whether or not a new position axis is needed and, if so, what would it look like? Hmm..

I’ll be giving this to my students in a few days, and I’m hoping for the best!

 

 

E&M Modeling: Inductance

This post is part of a series of posts documenting my efforts to keep with a modeling philosophy in my AP Physics C: E&M class where sticking to the Modeling method can often times be difficult. Getting exact measurements on things like electric field strength, electric and magnetic flux, and current changing over time can be difficult or outright impossible without a bunch of expensive equipment. Here’s another way that I’ve figured out how to adapt and keep as best I can do the method through the amazingly useful and 100% free PhET simulations paired with the Hudl Technique app.

Sequencing and setup

This “lab” was conducted after a 2 week introduction to electromagnetism through Faraday’s Law and Lenz’s, which they constructed a conceptual model of by using the Faraday’s Electromagnetic Lab simulation. The remaining time was spent working the typical run-of-the-mill induced current/EMF problems, including my favorite E&M demonstration of dropping a magnet through a copper tube.

I began by drawing a simple circuit with nothing more than a DC voltage source and a loop of wire, and they discussed how the magnetic field within the loops would change as the current and number of loops increased producing a simple drawing like this:

circuit1

I essentially wanted to get them thinking more about the time-behavior of circuits, which we haven’t done a lot of. Most of their experience has been that either the circuit is on or it’s off, no mention of anything in between.

Students then setup a simple RL circuit using the PhET Circuit Construction Kit (AC+DC) Virtual Lab simulation and answered a series of questions mostly aimed at making sure they noticed all of the things I wanted them to notice.

circuit2.png

question1

question2

To accompany question 5, I asked them to model time time-behavior the potential difference across the bulb and the inductor using a diagram I came up with last year. The idea here was to both solidify their understanding of the time-behavior of the potential difference as well as to set them up to be able to explain the results using Lenz’s Law.

circuit3.png

Recreation of what my students came up with.

They were already familiar with the negative sign due to Lenz’s Law within Faraday’s Law, but they viewed it from the context of determining current direction by looking at the direction of the change in magnetic flux. From here, I added to their drawing to help them understand exactly why the bulb started with no difference in potential across it.

circuit4.png

The opposite emf induced by the inductor cancels out what would otherwise be a 10V potential difference across the bulb.

Armed with the beginnings of a conceptual understanding of what was going on in the circuit, they were now tasked with developing a quantitative model for the current and potential differences within the circuit.

Obtaining and analyzing time-dependent behavior

I have neither the equipment, funding, or even the knowledge of what kind of equipment I would need to procure in order to get the kind of data I want. Instead, I had my students use the free Hudl Technique app, which not only turns any smartphone into a slow motion video camera, but also allows you to advance frame-by-frame through the video with the accompanying time-stamp of each frame. They placed an anmeter and voltmeter in frame of their camera, took a video, and then scrolled through afterwards in order to record the current and potential difference across the inductor at various points in time.

circuit5.png

Armed with a notebook full of data, my students jumped into Plot.ly to determine equations for V(t) across the inductor and I(t) within the circuit. Below are their results.

graph1.png

R-squared of 0.9998. Current function I(t) = 0.998 – 0.992*exp(-0.0544*t)

Students quickly realized that the 0.998 and 0.992 were awfully close to the maximum current of 1 A so were easily able to generalize that part of the equation. The 0.0544, on the other hand, was not so obvious. They’ve yet to begin tackling that yet, though. They’re potential difference graphs produced equally solid results:

graph2.png

R-squared of 0.9999. Potential difference function V(t) = 0.0626 + 9.89*exp(-0.541*t)

Like with the maximum current, students saw the parallel to maximum potential difference. They also noticed that the term within the exponential was almost identical, though they’ve yet to delve into what that means.

Finally, I asked them to plot the potential difference vs. the derivative of the current with respect to time as I knew that the slope of this graph would be the definition of inductance. They, of course, don’t know that yet. Taking the derivative of their current function and plotting it with respect to potential difference values gives the following:

graph3

R-squared of 0.9999. Potential difference function V = 182*dI/dt + 0.0762

Hey! It’s linear! And here’s why my students are for now, which we’ll pick up on the next time we meet. Everything after this is my attempt to explain everything out in the way that I’d want my students to see it. It will essentially be a record of me trying to figure out what all this means because I’m still not yet sure what inductance is beyond being able to qualitatively describe what higher or lower inductance does to a circuit’s behavior. But that’s ok because…

But what is inductance really?

Dimensional analysis can be used to figure out that the units of the slope are volt-seconds per amp, which is a little difficult to explain in the typical For every ___ [unit 1], ____ changes by [unit 2] framework that my students (and me) are used to. It can be shown that the units can also be written in terms of tesla-meters-squared per amp, giving units of magnetic flux per amp, which is much easier to understand. Hey! Inductance basically is a measure of the magnetic field per amp that can be generated in an inductor. Neat.

However, that doesn’t quite help determine how the circuit behaves as the slope, i.e. the inductance, changes.

Solving the equation for dI/dt yields the following:

equation

So, as the inductance increases, the rate of change of current decreases, meaning that it takes a longer amount of time for the circuit to reach the maximum current value. Since the current takes longer to ramp up, this means that the magnetic field generated within the inductor also takes longer to ramp up…

After running off and checking with the simulation, it turns out that I’m correct. Hooray! Though, to be honest, since both I and V are functions of time, I can’t quite shake why my logic feels a bit shakey even though the prediction is accurate. Something to think on.

Actually feeling like I understand inductance is a rather new feeling to me, but please let me know if I’m totally missing something here. You’ll do me and my students a huge service!

 

 

Learning to Appreciate The Choice of a System

A New Found Appreciation

On my seemingly mountainous, yet steadily disintegrating, pile of Really Important Physics Things That I Never Learned in Undergrad (TM) was the importance of choosing a system when analyzing multiple objects in an interaction. Physics is, among other things, a study of how things interact, but when your analysis is only focused on one object, then deliberately choosing a system seems unnecessary. A rope pulling a crate is certainly “multiple objects interacting”, however in problems such as this, nobody actually cares about the rope. For much of the traditional kinematics/dynamics sequence, the choice of a system is largely invisible and often a single object. The car. The crate. The ball.

But this becomes a problem when anything involving a conservation law comes into play. Whether or not some quantity is conserved is completely dependent upon the chosen system. Upon reflection, I imagine the unspoken, implicit choice of “system” becomes something murky like “all the objects mentioned in the problem” or even “the entire universe.” I also suspect that not explicitly defining a system causes issues with students applying conservation laws [citation to be added later, possibly?]. If students internalize “energy conservation” as “energy doesn’t change”, then I can see that causing issues with incorporating work/change in energy into their problem solving process. Same goes with the impulse-momentum theorem and momentum.

This new appreciation for the explicit choice of a system started with a twitter conversation earlier this year in which I expressed my dislike of the phrase “closed system.” Yet until recently, I wasn’t sure how to help my students develop the same appreciation and understanding of what it means to define a system in relation to conservation laws. Until now. I think.

Introducing Momentum

My students were working through the paradigm lab for the momentum unit from the AMTA Modeling Curriculum. Two frictionless carts, one of which is spring-loaded, “explode” away from one another. Students are tasked with placing them on the track at such a location that the carts reach the edge of the track at the same time. Through varying the mass of one of the carts, students discover the inherent ratio nature of momentum and interactions and come up with the following equation (momentum is defined as mass*velocity after they come up with the top one):

momentum

carts1

Afterwards, they worked on using momentum bar charts to represent the experiment. I doctored the numbers a little to keep the focus on the concept of thinking proportionally while not being overshadowed by seemingly random decimals and fractions. I asked them to determine the initial (as defined before the carts exploded) total momentum and the final total momentum (as defined as after the carts stopped touching), to which their surprise was zero. Peculiar!

To be perfectly honest, I wasn’t planning what came next until the night before I did it, which is when I remembered the twitter conversation from earlier this year. As it turns out, asking students to sum up the momenta of the carts came in handy later on.

Taking a Second Look

My general strategy for students discovering foundational laws and principles is to provide them both with an experiment and a way to view the results in such a way that whatever it is I’m wanting them to discover screams at them with a megaphone “HEY! LISTEN! HEY!” until they can’t stand it anymore. In this case, I’m wanting them to discover the Law of Conservation of Momentum while simultaneously approaching the Impulse-Momentum Theorem. Students were prompted at the beginning of the class to organize their notebooks into two columns with three rows each.

do this

I started with analyzing the carts separately because that’s what they’re used to. We’d not formally discussed how to analyze a collection of objects, much less that such a thing was “allowed.” I allowed students to work primarily in their groups without assistance from me, and they required little help as all of the diagrams and analysis was nothing new to them. Once I was certain that all the groups had gotten everything, I put my analysis on the whiteboard.

separate

The diagrams with all the circles on the left are system schemas, which were introduced months before when students were first learning how to draw free-body diagrams. Emphasis was placed on determining whether the momentum of each “system” (i.e., cart) was equal or not equal to zero, along with the final change in momentum from before, to during, to after.

Next up was for students to re-do the analysis, but treating both carts as a single system.

What’s in the booooxxxx?

What I was most worried about was the level of abstraction required for students to truly understand what it meant to analyze both carts as a single system. We hadn’t discussed center-of-mass, nor had we discussed what it would mean for the center of mass of an object or collection of objects to be located outside of those objects. While center-of-mass would be the most accurate way to articulate the effects due to conservation of momentum, it would require more new concepts and abstraction, which I was sure to be too much for my students to assimilate at once. Instead, I placed a box over both carts.

box

I emphasized that this sort of analysis is something that we’d done many times before. The carts themselves are made of individual atoms all interacting with each other, yet we never worried about it because it was unnecessary. Treating the carts as a “single” object was really no different, and the visual of the box really seemed to drive the point home.

During the times in which students were moving through each of the before, during, and after steps, I would raise the box, set the carts accordingly, and put it back down. I emphasized that we were only concerned with what happened to the box from the outside. Just like we didn’t care what individual atoms were doing before, we don’t really care about what happens inside the box. Without much help from me, students produced the following analysis in their notebooks. Again, emphasis is placed on determining the total change in momentum from before, during, to after the interaction.

after

At this point, students are asked to make a claim, and support it with evidence and reasoning. Most groups’ claims were of the following form:

If the forces on a system are balanced, then it’s momentum doesn’t change. If the forces are unbalanced, then it’s momentum does change.

Sounds a lot like a conservation law to me, which is typically stated like this:

In a closed system, the momentum of that system doesn’t change.

I’m with Frank; ditch the phrasing of “open” and “closed” system all together.

Closing Thoughts

There’s no reason to wait until momentum to introduce the idea of analyzing systems of single and multiple objects. Next year, I certainly won’t wait so long. I imagine the same type of demonstration can be performed and analyzed to get the point across. This will be particularly useful once we get into energy, where the entire concepts of work and power are defined by what’s happening by or on the system and, of course, the link between the system definition and the law of conservation of energy.

This has also helped me realize something about the kind of physics teacher that I am. I am continually fascinated by all the connections I’m discovering that I never found on the first, second, or third time around with all of this content. Now, more than ever, I see physics as an intricately constructed puzzle-that’s-also-a-tower, built from the ground up from a few simple principles and definitions. I want to help my students construct this tower for themselves and see all the beauty in the details that I do. More practically, I think that students being aware of these details helps them achieve a more deep understanding of physics.

E&M Modeling: Flux part 2

Setting the Stage

In my last post I wrote about a theoretical approach to having students discover the concept of electric flux for a point charge. While they struggled with explaining what the proportionality constant for their Electric field vs. enclosed area graphs meant (aka, the flux), I was still satisfied with the results. What turned out to be the most useful question was asking them why I might have chosen a spherical surface to draw around the point charge as opposed to some other shape. After all, it’s a completely imaginary surface, so why this one?

They didn’t have much to say until we spent some additional time refining the equation we’d come up with:

fluxequation2

Those of you more familiar with the concept of flux will recognize the missing cos(theta), so my next goal was to have them choose to add that term to the equation.

I started the discussion by holding up a whiteboard and told them to imagine a steady stream of wind flowing with a constant speed directly at me. I asked At what angle should I hold the whiteboard so that I could “harness” the wind stream as best I can?

It only took a few moments for them to realize that angling it completely perpendicular would allow them to maximize their “use” of the wind stream and that holding the board parallel would minimize it. I then asked about the wind then blowing at some in-between angle and put this picture up to help them visualize.

flux2

They first decided that this would yield some level of “usefulness” that was in-between the maximum and minimum values based on the angle between the vectors and the surface. Asking which “part” of the vector contributed to the “usefulness” led them to conclude that the perpendicular component of the vector was the only part that contributed. They were unable to see a difference between using the sin of the angle between the vertical and the vector and the cos of the angle perpendicular to the surface, which is fine because there isn’t one. I said that we should use the angle with the perpendicular only because that’s the convention, which will come in handy later. Their equation was now this:

flux3

Revisiting my original question

My original question was this: Why did I choose to draw a spherical surface around the point charge? Why not any other surface?

I put this picture back up on the board to help with visualization. I’m discovering more and more that the difficulties with flux and Gauss’ Law are primarily with visualizing the various surfaces and charge distributions, so any chance I have to aid in that I take.

fieldlines

They quickly determined that the field lines were perpendicular at each point of the circular surface, which was easily extended to a spherical one. Since each point was perpendicular, cos(theta) is just 1, thus the flux calculation is almost trivial.

Making the flux calculation trivial is one of the primary ways to effectively utilize Gauss’ Law. My purpose here was to continue their development of seeing spatial symmetries and using those symmetries to simplify otherwise complicated calculations.

Finalizing the flux equation

The equation they’d come up with was more generalized, but still not as general as it needs to be for both using and understanding Gauss’ Law at a deeper conceptual level. I also continue to emphasize that the more general a scientific model is, the more useful it becomes. So the issue with their equation is that it assumes a surface in which the field lines are perpendicular at each point of the surface. What if that’s not possible? How can we generalize the equation to work for any surface?

I drew a square around the point charge to help jump start the discussion.

flux4

The question now is this: How can we calculate the flux through the square?

I’m careful to clarify that I’m not looking for them to jump to a mathematical equation, but rather I want them to brainstorm on a conceptual way to do it. We’ll worry about the mathematics later. Just talk me through how you might calculate this.

I should mention that this isn’t the first time I’ve had them do this kind of exercise. I first exposed them to this when calculating electric fields of extended bodies, pre-flux/Gauss’ Law as a way to get them thinking in “calculus-mode.” Even though all of my students are in AP Calc BC, they haven’t gotten to integrals yet, but that doesn’t mean they can’t start “thinking calculus.” Writing this post now has me thinking that I’ll write up my approach to that. So I’ll do that at some point.

Anyway, when they got stuck, I asked them how they could get the contribution to the flux due to an individual field line and then reminded them that the total flux was the contribution due to all the field lines. They came up with this:

We just need to know the E at each point on the square, multiply it by the cos of the angle perpendicular to the square, add all that up, and then multiply by the area of the square.

I then asked them to write that out mathematically yielding this:

flux5

While that may cause a mathematician to cringe (and the Asquare part isn’t fully correct), I wasn’t worried about the correctness of their notation. The essence is there. This also let them see if E was the same at each point of the square and if cos(theta) was always 1, then those things could be pulled out of the sum, which will be useful once they get to Gauss’ Law. I then introduce the more formal definition of flux and made sure to show how each element of their equation translated to this definition:

flux6

I also briefly discuss the dot product, though I honestly haven’t done a great job of helping them build their understanding of it. I’m not sure that I care right now… but we’ll see if that comes back to bite me later one. I’m careful to emphasize that the only real differences between their equation and this one is that of notation. I explain what the circle on the integral means along with the S below the integral.

Next up: Gauss’ Law

My students still weren’t exactly sure why we we were spending so much time on this concept of flux. I’d mentioned several times that this would help make deriving expressions for electric fields much easier than the brute force method they’d done previously, but that doesn’t mean they see why this will be a path to that.

One student had alluded to looking at the relationship between the flux and the charge inside the surface, which is exactly what Gauss’ Law is, so I brought that point back up for discussion. In my next post, I’ll talk about how I had them approach investigating that and how they used it to come up with Gauss’ Law.

E&M Modeling: Flux part 1

The Dilemma

It’s no secret that I’m all about Modeling Instruction. While I don’t necessarily follow their curriculum to the “T”, the ideas behind it undoubtedly form the backbone of almost everything I do in my class. And I definitely use a fair share of their worksheets and labs almost verbatim.

The basic idea behind modeling is that all the equations, rules, laws, etc. that are typically delivered to students and expected to believe a priori are instead derived and discovered through a series of paradigm labs performed at the beginning of an instructional unit. This works great when you’re rolling balls down ramps or swinging pendulums, but it’s much more difficult (if not impossible) to this with things like Gauss’ Law or Electric Flux given even my very well funded equipment budget.

Thus, my dilemma. I’m teaching AP Physics C: Electricity and Magnetism for the first time this year, and I was terrified that I’d be reduced to mostly lecturing. I hate lecturing. My kids hate it, especially given that I had them last year. They’ve got expectations of what “Physics with Mr. Register” is like. And it just doesn’t work. Thankfully, desperation is a great motivator for me, and I think I’ve stumbled on to some excellent alternatives.

I won’t pretend to have all the answers right now, but things are turning out quite differently than I planned. The next two three posts will be two different paradigm “lab” ideas that I’m using to have students invent the concept of electric flux and to derive the simplest case of Gauss’ Law.

Where They’re At

My students have just finished working through deriving the electric field due to a thin ring, thin disk, and a half-circular ring the brute-force way:

efield

Which is terrible, even for the most symmetric of situations (well, I think it’s super cool…). I’ve got my reasons for them doing this… but that’s for another post.

So at this point they’re aching for something simpler.

Electric Flux

We start with a quick review of field lines, in particular that the density of field lines at any particular point corresponds to the field strength. I then draw field lines for a point charge on the whiteboard and draw a few concentric circles around the charge.

fieldlines

When prompted with How does the density of field lines change as the radius of these imaginary circles increases?, they quickly reply that the density decreases, which means that the field strength also decreases. Which is nothing new because we’ve been dealing with electric fields for 2 weeks now.

I then tell them that we’re going to examine the relationship between the area of these imaginary circles and the density of field lines within that circle, i.e. the field strength. Unfortunately, my only response to the question Uhh… why? is that they should trust me because it will take the nasty integral away. And because why not?

Except that we’re going to do it in 3D with the surface area of a sphere to better model reality, us living in a 3D world.

flux

Instead of setting this up as an actual experiment, I explain that we’re going to put our theoretical physicist hats on.

They’re tasked with calculating the electric field strength of a 1 nC point charge at a distance of 1 to 7 m (in 1 m increments) along with the surface area of the accompanying sphere.

fluxData Once they’re done with their calculations, they dutifully jump to graphing the data:

fluxplot

Linearizing and slope finding occurs, and then they generate the following equation:

fluxequation

After some discussion as to the meaning of the slope, students come up with essentially the definition for electric flux: the “amount” of electric field penetrating a given area. Then some rearranging and symbol assigning, and we’ve come up with a (very limited) mathematical definition of electric flux.

fluxequation2

I also pose some additional, fairly standard follow-up questions:

  • How does the flux change as the field strength increases and decreases? The area?
  • How does the field strength change as the flux increases and decreases? The area?

Nothing very difficult at all for students in AP Calculus BC, but still important to discuss.

What’s Next?

We need to now generalize the equation for electric flux to include the pesky “only the perpendicular parts of the field are important” condition. I’m still figuring out how to have them arrive to that conclusion… but my current idea is to pose the following question: Why did I choose a sphere? Why not some other shape? Hint: think about symmetry. 

Ideally, they’ll see the spherical symmetry of the situation and that will shed some light on why the fact that the field lines are perpendicular to the surface of the sphere at every point is important.

After a day or two whiteboarding with this new idea, I’ll ask students to investigate the relationship between the flux and the charge enclosed within the spherical surface, which will yield the simplest case of Gauss’ Law.

But I’ll wait to post about that once I get there. Until then, if you’ve got any ideas on how to improve on this, please share!

See part 2 here!

Introducing Rotational Kinematics through Desmos and Direct Measurement Videos

No rotation equipment? No problem!

Like many AP Physics 1 teachers, I’ve had to figure out how to teach rotation this year. As I’m still new to the profession, the amount of lead time I have on my lesson plans has shrunk to about 2-3 days by this time of year. Here I was with a few days to plan an entire unit that would ideally start off with a lab that I didn’t have equipment for. Thankfully, there exists a thing called Direct Measurement Videos that have got me covered. I wrote about why they’re awesome earlier in the school year. Later in this post, I’ll talk about how I integrated this with Desmos to get a match made in heaven.

Introducing Rotational Motion

I first started with a simple video of a rotating disk with some markers on it. dmv1 I talk briefly about the differences between translational and rotational motion and give them their first task: come up with a way to to measure the position of the dots in as simple a way as possible. Essentially, I asked them to invent the concept of angular position. A few groups proposed using the arc length that the dot traces out, bu once they saw how complicated the math would be they took a different approach.

I was surprised that it only took about 15 minutes for each group to independently settle on using the angle from a chosen reference point to measure position. I did this because it’s critical for students to have a strong conceptual understanding of the fundamentals of rotational motion. If they don’t understand the basic idea that position is measured relative to a reference point, then everything else becomes much more difficult. I wanted to pair that idea with their idea to measure the angle relative to the reference point. Since they’ve been in physics for a semester-and-a-half by now, it went fairly smoothly. Nonetheless, it’s a critical step, and the 30 total minutes they spent on the activity saves them (and me!) a bunch of time later on.

Integrating Desmos

The next day, I use a different video, a disk accelerated by a falling mass, to be their first foray into exploring rotational kinematics relationships. This video is a good choice for several reasons:

  1. The frame count starts at 0 when the ribbon is cut. This makes converting frames to time values much easier for students.
  2. It has 3 different points marked on the disk. I had groups investigating different points. They’ll see at the end that the angular acceleration was the same for all the dots, which is surprising to them. It’s also sets a good time to differentiate between angular and translational quantities.
  3. The disk only goes through about a 1/4 turn. It helps with the data turning out very clean as frictional, air resistance, etc. effects are minimal.

Students generate an angular position vs. time graph from their data. Now, normally, I’d have them open up a blank instance of Desmos, input their data, and then find the parent function that fits their data. This time, however, I used a template that I adapted from one of Desmos’ stock graphs, Calculus: Tangent Line. What I wanted was for students to first find the equation for angular position, and then use the slopes of the tangent lines to generate an angular velocity vs. time data table from which they could make another graph. This can be done by hand, of course, but we definitely don’t have time for that. I slightly modified the stock graph by adding a data table, changing some variable names, and adding some instructions specific to the activity. What the student sees. Once they’ve figured out the parent function (SPOILER: it’s quadratic.), they can use the slider to pick a point on the parabola through which a tangent line is drawn. The t point gives the time value, and the slope of that line gives the angular velocity at that time.

desmos1

This screenshot doesn’t show any actual data points, just the parent function and tangent line.

Once they have an angular velocity vs. time graph, which I have them do on a new blank Desmos graph since they don’t need the template for a linear relationship, they find the equation of the line, find the slope, and start figuring out what it all means.

What I really like about the template (and Desmos in general) is that it allows students to play around with the different sliders and explore how the slope of the tangent line changes as it moves back-and-forth on the parabola. It gives a very convincing visual showing why this specific curve yields an increasing velocity; they can see the tangent line getting steeper and steeper right there in front of them! It also saves a lot of time. I had them do this by hand when we did translational kinematics at the beginning of the year, and it took two full 50 minute class periods. And, even then, I’m certain that many of my students weren’t fully understanding exactly what they were doing as they were so focused on carefully drawing lines, estimating points to calculate slopes, and all the other mechanics of doing this manually.

Desmos takes all that away and lets them only have to mess with the important stuff. For this activity, I had students using a set of iPads that my school has. This can just as easily be done on desktop computers, laptops, or even students’ phones. Here’s the template that I gave to my students. If you create an account and save it, you can modify it for your own purposes.

Thoughts on Desmos

Ever since I found Desmos at the end of last school year, I’ve been finding more and more ways to integrate it into my classes. For example, at the beginning of our simple harmonic motion unit, students discovered that the position of a mass-on-a-spring follows the cos(x) function. After having been introduced to some vocabulary, I gave them this warm up the next day: desmos4 I’ve also noticed throughout this year that students think that anything (and I mean anything) that’s not linear is automatically “exponential”. The joke ends up being on them, however, as nothing we graph ever ends up being truly exponential. This wasn’t a misconception I thought needed to be tackled, but we’ve knocked that one out nonetheless! When trying to find functions that fit the data, being able to effortlessly zoom in and out as well as change the range of the axes takes care of another problem I’d noticed when doing this by hand at the beginning of the year.

I’ve battled and battled, mostly unsuccessfully, to have students choose axis ranges that spread the data out as much as possible on graph paper. Because if they crowd the data in one corner, then it’s probably going to look linear. Not a problem in Desmos once I show them how to rescale and zoom. I had an additional idea while writing this post. I’ll make it happen eventually, or maybe you will and you can save us all the work! I’m imagining a “worksheet” utilizing the sliding tangent line idea. I could give them a set of premade position vs. time graphs of accelerated motion. They could slide the tangent line, observe the changes in slope, and use that to translate the position graph to a velocity vs. time graph. I could even use curly braces to piece together a section of motion that’s accelerated and then a section that’s constant velocity like this: y=x^2 {0 < x < 4} and y = 16 { x > 16}.

If this is your first time seeing Desmos, and your reaction is anything like mine… THE POSSIBILITIES ARE ENDLESS…! then my suggestion is to not look around for premade activities to suit your needs, but to instead just spend some time playing around with it. Look for every excuse you can to do something in Desmos. Once you’ve figured the basics out, look at the premade ones for more ideas. Eventually, ideas will just start coming to you! Above all else, Desmos is a sandbox, and the more you understand all the nuts and bolts, the better suited you are for bending it to suit your needs.

Why Direct Measurement Videos are Awesome

Direct Measurement Videos?

Yes, Direct Measurement Videos. I attended a workshop at the 2014 AAPT Summer Meeting by Peter Bohacek (@bohacekp) and Matt Vonk (@matt_vonk), and throughout the 4 hours, all I could think about was “Ahh! The possibilities!” I can’t wait to implement them this school year.

The “Direct Measurement” part comes in through the overlays that allow students to make measurements directly from the video.

 

dmv1

This one is one of the simpler videos in which students are asked to calculate the velocity of the ping-pong ball. At first glance, this may seem trivial. Just  do distance divided by time, which you get by using the frames and frames-per-second values, and bam. You’re done. But just because the computation seems trivial doesn’t mean the physics are!

Why I love them

What would otherwise be a mostly trivial formula-hunting textbook problem has become a wealth of enriching discussion. For instance, students will need to decide how to measure the distance the ping-pong ball travels. Should they measure from the front of the ball? The back? The middle? Does it matter? How do we get the time? What’s this frames-per-second thing?

Another great feature is that their customized video player allows for frame-by-frame playback, thus opening further discussion. What frame should we start the measurement? End it? Why? There are lots of opportunities for students to justify all the choices they make along with many different paths to getting a solution. Having so many different ways of solving the problem, I think, goes a long way in helping students see that models and assumptions are made about a physical system based on intuitive and logical choices. And those choices need to be justified in order for any calculations to hold any weight. I think that this will help students move away from the idea that all these crazy equations are mystical, immutable descriptors of objective reality.

One activity we did today fit hand-in-hand with another idea that I’m in love with that I got from @kellyoshea: goal-less problems. The basic idea is that instead of giving students a situation and asking them to solve for various parameters, students are just given a description of a situation. They’re asked to figure out which models apply to the situation and to figure out, based on the given information, what things they could solve for.

We ran through the activity for a video of a toy plane flying in a conical circle.

dmv3

What we did is break into groups of 2-3, and each group came up with a problem. Many of them were fairly obvious (to us physics teachers, that is) things to ask: How long is the string? What is the radius of the circle the plane flies in? What’s the plane’s angular velocity? But there were also ones like “if the plane’s speed were to double, what would the scale read?” or, my favorite, “how long is the propeller? Wow. Peter read off some of the things his students have come up with, and they had just as many interesting and unique problems as we did, many that none of us came up with.

We then traded problems with another group, and tried to solve their problem. The overall goal was to come up with a problem that would stump another group in a sort of “face-off”, but the group had to be able to solve the problem they wrote. This encourages students to think about physics and physics problems in an entirely new way. Being able to write a good physics problem requires a thorough understanding of the physics involved.

What else?

 I was especially excited about the last video we looked at.

dmv4

The screenshot above isn’t of the exact video we looked at, but it’s similar. The video we looked at is still in the prototype phase, so it’s not ready to be released.

The bulb on the left and Joly Photometer are the same. However, the photometer is attached to a bunch of smaller light bulbs at a fixed distance away, and the bunch-of-smaller-light-bulbs-and-photometer system all move together on a track. There were 9 videos in total, each one turning on one additional smaller light bulb. If you plot the distance from the bulb on the left of the smaller-light-bulbs-photometer vs. the number of bulbs lit at the point where both sides of the Joly Photometer are equally bright, you get an inverse-square relationship for distance vs. intensity. My first thought?

Paradigm lab!

I’m not confident in my ability to set this up in a way that students could use to get meaningful measurements. I’m not sure that I want to devote the time and resources to building a reliable setup. Instead, I can check out my department’s laptop carts, and students can take all the measurements themselves. For labs with difficult and finicky setups and equipment like this? This is perfect.

I could rant more and more about how awesome these videos are, but I’m exhausted after my first day at my first AAPT Summer Meeting. I encourage you to check these videos out! I can see them being useful in any style of classroom, and they’re a much better alternative to spending a day solving textbook/worksheet problems when you can.